

1. y が x の関数で、次の式で表されるとき、一次関数であるものはどれですか。一次関数であるものには○、そうでないものには×で答えなさい。

(ア) $y = \frac{9}{x}$

(イ) $y = -4x$

(ウ) $y = \frac{x}{6} + 12$

2. 一次関数 $y = \frac{8}{3}x - 5$ について、次の問いに答えなさい。

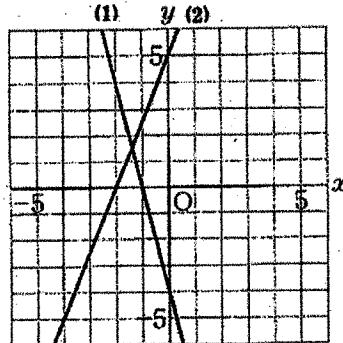
(1) x の値が 1 から 3 まで変わるとときの変化の割合を求めなさい。

(2) x の値が増加するとき、 y の値は増加しますか、それとも減少しますか。

(3) このグラフを上方に 7 だけずらした直線の式を求めなさい。

3. グラフが次のようになる一次関数の式を求めなさい。

(1) 傾きが -2 で切片が 9 の直線


(2) 変化の割合が 4 で、 y 軸との交点が $(0, 6)$ である直線

(3) x の増加量が 5 のとき、 y の増加量が 8 であり、点 $(5, 16)$ を通る直線

(4) 傾きが 2 で、点 $(3, 7)$ を通る直線

(5) 切片が 4 で、点 $(2, 2)$ を通る直線

4. 次の図は、一次関数のグラフである。(1)、(2)の関数の式を求めなさい。

5. 次の問いに答えなさい。

(1) 一次関数 $y = 3x - 5$ について、 x の変域が $-2 \leq x \leq 3$ のとき、 y の変域を求めなさい。(2) 一次関数 $y = -x + 3$ について、 y の変域が $-4 \leq y \leq 2$ のとき、 x の変域を求めなさい。

6. 次の連立方程式を解きなさい。

(1)
$$\begin{cases} 7x + 3y = 5 \\ 3x - 2y = 12 \end{cases}$$

(2)
$$\begin{cases} 5x - 2y = -5 \\ x - y = -2(x + 1) \end{cases}$$

(3)
$$\begin{cases} 0.1x - 0.08y = -0.06 \\ 2x + y = 4 \end{cases}$$

(4)
$$\begin{cases} x + y = 90 \\ \frac{15}{100}x - \frac{6}{100}y = 3 \end{cases}$$

7. 次の問いに答えなさい。

(1) テニスラケット 1 本とシューズ 1 足を買った。定価の合計は 12000 円だったが、ラケットは定価の 80% で、シューズは定価の 70% で売っていたため、代金の合計は 9200 円だった。このとき、次の問いに答えなさい。

① ラケットの定価を x 円、シューズの定価を y 円として、連立方程式をつくりなさい。

② ラケットとシューズの定価をそれぞれ求めなさい。

(2) 一定の速さで走っている列車が、570mの鉄橋を渡り始めてから渡り終わるまでに30秒かかり、630mのトンネルに入り終わってから出始めるまでに20秒かかった。このとき、次の問いに答えなさい。

- ① 列車の長さをxm、速さを秒速ymとして、連立方程式をつくりなさい。
- ② 列車の長さと速さ(時速)を求めなさい。

(3) 5%の食塩水と8%の食塩水を混ぜて6%の食塩水300gを作る。5%の食塩水と8%の食塩水をそれぞれ何g混ぜればよいか答えなさい。

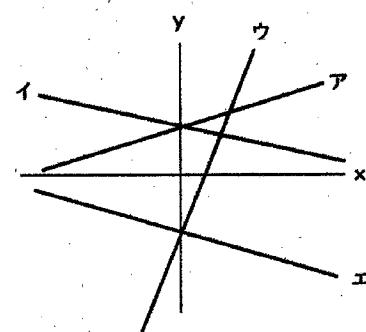
8. 次の問いに答えなさい。

(1) グラフが2点(-2, -9), (2, 7)を通る直線の式を求めなさい。

(2) 3点(-4, m), (0, -3), (3, 9)が直線 ℓ 上にあるとき、mの値を求めなさい。

(3) 点 $(2a-1, a+2)$ が $y = 5x+1$ のグラフ上にあるとき、aの値を求めなさい。

9. 次の問いに答えなさい。

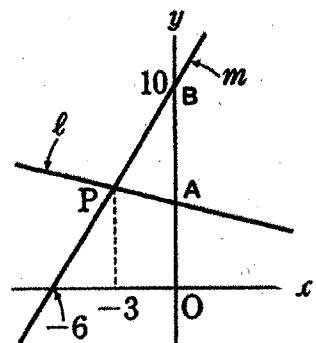

(1) 次の①～④の一次関数のグラフをかくと、次の図のア～エのようになる。②のグラフをア～エの中から選びなさい。

① $y = -\frac{1}{2}x - 4$

② $y = \frac{1}{2}x + 5$

③ $y = -\frac{1}{3}x + 5$

④ $y = 2x - 4$

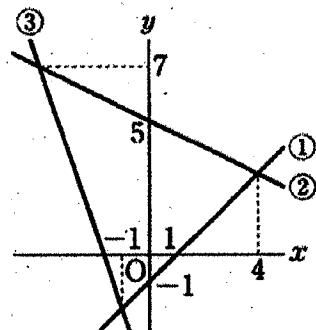


(2) 一次関数 $y = -\frac{1}{3}x + \frac{1}{3}$ について、 x の変域が $a \leq x \leq 7$ のときの y の変域は $b \leq y \leq 2$ である。 a, b の値を求めなさい。

(3) 次の図で、 ℓ の傾きが $-\frac{1}{3}$ の直線で、P は ℓ 、m の交点である。点 P の x 座標が -3 のとき、次の問いに答えなさい。

① 直線 ℓ の式を求めなさい。

② 直線 ℓ と y 軸との交点を A、直線 m と y 軸との交点を B とするとき、 $\triangle A B P$ の面積を求めなさい。



10. 次の図は一次関数のグラフである。次の問いに答えなさい。

(1) ①の式を求めなさい。

(2) ③の式を求めなさい。

(3) ①②③に囲まれてできる三角形の面積を求めなさい。

